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Abstract

A technique for reconstruction of the 2d surface velocity field from radar observations is
proposed. The method consecutively employs two processing techniques: At the first stage
raw radial velocity data are subject to EOF analysis, which enables to fill gaps in observations
and provides estimates of the noise level and integral parameters characterizing small-scale
variability of the sea surface circulation. These parameters are utilized at the second stage,
when the cost function for variational interpolation is constructed, and the updated radial
velocities are interpolated on the regular grid.

Experiments with simulated and real data are used to assess the method’s skill and
compare it with the conventional 2d variational (2dVar) approach. It is shown that the
proposed technique consistently improves performance of the 2dVar algorithm and becomes
particularly effective when a radar stops operating for 1-2 days and/or a persistent gap
emerges in spatial coverage of a basin by the HFR network.

1. Introduction

The technology of monitoring near-coastal currents by High Frequency Radars (HFRs)
has been rapidly developing in the past decade. HFR observations are now extensively used
to study near-shore circulation under a large variety of environmental conditions (e.g., [7],
[3], [20], [4]) helping to solve many applied problems in the coastal regions.

An obvious advantage of HFR observations is their availability in real time with nearly
continuous temporal and spatial coverage of 10-15 minutes and 1-2 km respectively. However,
the back-scattered HFR signals suffer from to numerous distortions of artificial and natural
origin. As a consequence, estimates of the along-beam sea surface velocities extracted from
the Doppler shifts of the signals become unusable, resulting in numerous gaps in spatial
coverage. These gaps may strongly degrade performance of the algorithms which extract the
2d sea surface velocity field from the HFR data (e.g., [10]).
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A natural way to fill these gaps is to take into account space-time correlations between the
radial velocities. Assimilation of the HFR data into numerical models is the most straight-
forward and general approach, which has been under development in recent years ([14], [3],
[17], [18], [9]). The underlying idea is to combine dynamical constraints of a model with the
history of dense spatio-temporal coverage by HFRs to produce the “best” estimate of the sur-
face velocity at a given time. This approach, however, has a number of drawbacks hindering
its implementation for real-time HFR data analysis: Beyond a relatively high computational
cost, inverse numerical models have a large number of free parameters whose statistics is
poorly known. The most problematic among those are the open boundary conditions, which
are the major contributors to slow convergence of the HFR data assimilation schemes typically
involving lengthy open boundaries.

An alternative more simple approach can be classified as the 2d objective analysis (OI) or
spline interpolation [16]: The corresponding least-squares algorithms differ from each other
by specifying either the covariance function or its inverse. In application to HFR data the
OI algorithms were implemented using empirical error covariances deduced from “normal
modes” [15], “open-boundary modes” [10] and the data [11], [12]. A comparison of these
methods was given by Yaremchuk and Sentchev [24] who also proposed to augment the cost
function with the terms penalizing grid-scale variability in the divergence and vorticity fields.

Although the 2d OI methods are computationally cheaper than the variational schemes
involving dynamical information, they may perform poorly in the presence of large gaps in
the data because information on the spatial structure of the velocity field within the gap is
implicitly drawn from the idealized covariance function, which looses accuracy at large dis-
tances. A certain improvement of the covariance models can be obtained by considering their
truncated expansions in the empirical orthogonal functions (EOFs), a technique successfully
used in Kalman filtering (e.g., [23]) and variational data assimilation [5] [25].

The EOF-based estimates of the covariances rely upon time averaging and, therefore, may
be successfully applied not only to model output but also to data sets with nearly continuous
spatio-temporal coverage e.g., sea surface temperature (SST) or HFR data. Beckers and
Rixen [2] (hereinafter BR03) proposed an iterative EOF-based technique for filling gaps in
the gridded SST images, which was successfully applied in Adriatic [1]. Kondrashov and Ghil
[13] developed the method further by including time correlations into the procedure under
the assumption of statistical stationarity of the observed fields.

The goal of the present study is to design a HFR data interpolation algorithm capable of
processing situations when one or more radars are out of operation. To do that we modify the
BR03 method to make it suitable for processing HFR observations and combine it with the
2dVar technique. Large gaps in HFR data are filled using a truncated EOF decomposition
of the radial velocity covariance matrix. Spatial correlations between the radial velocities
are as lo used to estimate observational noise, assess its variance, and quantify the grid scale
variability of the velocity field. These parameters are inferred directly from observations and
used to define the cost function weights for 2dVar mapping of the HFR data onto the regular
grid.

The paper is organized as follows. In the next section we briefly describe the methodology
of 2dVar interpolation and estimation of the error covariance via truncated EOF expansion.
In the same section we also describe optimization of the truncation number and computation
of the cost function weights. In Section 3 the method is verified using twin experiments with
the HFR data simulated by a numerical model in a real domain (Monterrey Bay). Section
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4 describes the results of experiments with the real observations off the Opal Coast of the
Eastern English Channel. It is shown that the proposed algorithm significantly improves
the accuracy of interpolation within the gaps typical for HFR observations, including the
important case of a single operating radar. Conclusions and discussion of further development
of the method complete the paper.

2. Methodology

The technique described here employs advanced statistical and variational methods to
improve the accuracy of interpolation of HFR observations of surface currents. The under-
lying idea is to first retrieve spatial correlations between the radial velocities from the data,
then use the obtained statistics to fill gaps in observations (interpolate in data space) and
consistently define the cost function weights (inverse of the velocity error covariance) for
2dVar interpolation.

The proposed processing technique consists of four consecutive steps: a) EOF analysis of
the radial velocities; b) Signal/noise separation and computation of the cost function weights;
c) Filling gaps in observations; d) 2dVar interpolation of the preprocessed data set.

2.1. Variational interpolation of the radial velocities

Consider an oceanic domain Ω partly bounded by the coastline ∂Ω0 where HFRs are located
(Fig. 1). Projections vnk of the surface velocity field vt(x, y, tn) on the radar beam directions
rk are observed at times tn at a discrete set of points xk, k = 1, ...,K located along the beams
(upper left panel in Fig. 1). Our goal is to obtain gridded estimates vn of vt(x, y, tn) given
vnk .

The number M of points of the regular grid defines the number of unknown values of
the interpolated function to be determined from K observations at a given time tn. In the
particular case of the HFR data the interpolation grid step is often chosen such that M ∼ K/2
because two velocity components have to be defined at a regular grid point, whereas only one
component is measured at an observation point.

A standard approach to regularizing interpolation problems is penalizing small-scale vari-
ability (enforcing smoothness) of the interpolated fields [16]. The latter is usually represented
by the action of the Laplacian on the field subject to interpolation. In application to the
HFR data Yaremchuk and Sentchev [24] have shown that it is beneficial to enforce smooth-
ness in the divergence divv = ∂xu + ∂yv and vorticity curlv = ∂xv − ∂yu patterns. This
approach facilitates extraction large-scale components of these physically important features
of circulation. In the present study we utilize similar technique. In addition to the terms
proportional to (∆divv)2 and (∆curlv)2 we also enforce smoothness in the velocity field v.

At a given time the velocity field v is obtained through the constrained minimization of
the quadratic cost function:

J=
1

2K

K
∑

k=1

σ−2
k

[

(P̂kv)·rk − vk
]2
+

1

2A

∫

Ω

[

W d(∆divv)2 +W c(∆curlv)2 +W u(∆v)2
]

dΩ

→ min
v

|v(∂Ω0)=0 (1)

Here K is the number of observations, A is the area of the interpolation domain Ω and P̂k

is the local interpolation operator which projects the unknown velocity vectors onto the kth
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observation point from the apexes of the grid cell, enveloping that point. Factors σ−2
k ,W d,W c

and W u are the inverse error variances of the corresponding squared quantities, so that J
could be treated as the argument of the Gaussian pdf P(v) defined on the 2M -dimensional
space of the gridded velocity fields v: P(v) ∼ exp[−J ].

In contrast to the previous studies [10], [24], where regularization factors or their ana-
logues were determined empirically, here we take the advantage of the rich temporal statistics
provided by the HFRs and obtain the cost function weights from the statistical analysis of
the data.

2.2. Signal/noise separation

Spectral decomposition provides the following representation of the covariance matrix:

C = UΛU T,

where U is a rectangular matrix whose columns are the eigenvectors ek (empirical orthog-
onal functions, EOFs) of C corresponding to the eigenvalues λk, and Λ = diag{λk}. The
eigenvalues quantify time variation of the spatial patterns in the radial velocity distributions
described by the corresponding EOFs.

Having the EOF decomposition of the data at hand, the noise level could be estimated
using the cross-validation (CV) technique (e.g., [2]). The technique provides a certain number
of EOFs (modes) Kr, which describe the portion of variability of the radial velocities, that is
well-resolved by the HFRs. The rest of the modes ek, k > Kr are attributed to noise, whose
spatial variability cannot be determined with statistical confidence.

Technically, Kr is computed as the number of modes which provide a minimum for the
interpolation error at the randomly chosen set ωc of CV points (Fig. 1). These points are
temporarily removed from observations and constitute a small portion of the data set to
minimize their impact on the result of covariance estimate.

Note that locations of the CV points should change in time in order to keep the dimension
of the covariance matrix C equal to K. This requirement may result in a certain distortion
of the covariance estimate because, in the presence of the artificial gaps (introduced by CV
points), the number of snapshots in the time-averaging operation depends on the pairs of
points being correlated. In such case the covariance estimate may not be even positive-
definite (e.g., [22]) but with sufficiently small number of CV points one may hope this effect
will be negligible. Technical details of minimizing the interpolation error with respect to Kr

are given in Sections 2.3 and 3.2.
With the optimal cutoff number of modesKr, the covariance matrixC can be decomposed

into the well-resolved C r and unresolved (noisy) C n constituents:

C = C r +C n ≡ U rΛrU
T

r +U nΛnU
T

n (2)

where U r is the Kr × K matrix, whose columns are the first (well-resolved) eigenvectors,
Λr = diag{λk}, k = 1, ...,Kr ; the eigenvectors in the columns of the (K −Kr) ×K matrix
U n are attributed to noise, and Λn = diag{λk}, k = Kr + 1, . . . ,K.

The noise level ν is estimated as

ν =

[

TrΛn

TrΛ

]
1

2

≡





K
∑

i=Kr+1

λi/
K
∑

i=1

λi





1

2

(3)
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whereas observation error variances σ2
k, k = 1, ...,K are represented by the diagonal elements

of the matrix C n = U nΛnU
T

n .
The diagonal elements of C are also used to estimate the variances σ2

u, σ
2
c and σ2

d of
the respective fields ∆v, ∆curlv and ∆divv. In the present study we assume that the
corresponding inverse variances W u,W c and W d do not vary in horizontal and compute
them as the reciprocals of σ2

v , σ
2
c and σ2

d. The values of σ2
u, σ

2
c and σ2

d are obtained through
the following formulas

σ2
u =

2TrC

Kδx4
; σ2

c =
2TrC

Kδx4L2
c

σ2
d =

2TrC

Kδx4L2
d

(4)

Where δx is the grid step of the interpolation grid and Lc, Ld are the scales of variability of
the curl and divergence fields inferred from statistical analysis of the data.

2.3. Interpolation in the data space

The final step in preparing to interpolate is filling gaps in observations. Although the
cost function (1) does not contain spatial correlations between the radial velocities, this
information could be taken into account at the preliminary stage by the gap-filling technique
proposed by Beckers and Rixen [2] for the SST data. Below we give a brief description of the
method with an emphasis on the difference in its application to HFR observations.

To fill a gap containing points xi in a subdomain ω ⊂ Ω, the radial velocities v(xi)
observed outside the gap (xi∈ Ω \ω) are expanded in Kr “resolved” eigenfunctions ek of C :

find αk :
∑

xi∈Ω\ω

[

v(xi)−
Kr
∑

k=1

αke
k(xi)

]2

→ min
αk

(5)

and the expansion coefficients αk are used to obtain radial velocities within the gap:

v(xi∈ ω) =
Kr
∑

k=1

αke
k(xi ∈ ω) (6)

Note that a gap may also include points from the CV set ωc.
After this the EOF expansion is iteratively improved: a set of EOFs {ek

(m)} on the mth
iteration is computed using the covariance estimate C (m) emerging from the “data set” whose

gaps are already filled with the help of the previous EOFs {ek
(m−1)}, then these new EOFs

{ek
(m)} are employed to fill the gaps again. The process terminates when the relative reduction

of the mean interpolation error

ε2 =
∑

xi∈ωc

[

v c(xi)−
Kr
∑

k=1

α(m)ke
k
(m)(xi)

]2

(7)

computed over the CV set ωc becomes smaller than the machine precision. The difference of
our approach from BR03 is the following:

a) at the first iteration we use the direct estimate of C (which may not necessarily have
a positive definite spectrum) derived from the gappy data set (BR03 algorithm fills the gaps
with zeroes to obtain a positively definite estimate of the covariance matrix). The reason is
that distortion of the spectrum by gaps in HFR data usually occurs at the high-wavenumber
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part of the spectrum, which is not used by the gap-filling process anyway, whereas the direct
estimate of C gives somewhat better approximation of the leading eigenfunctions. Of course,
a lot depends on the spatio-temporal structure of the gaps, but our experience with HFR
data shows that this property is well kept for a typical set of HFR observations: we never
encountered negative eigenvalues in neither simulated, nor real data;

b) interpolation within the gaps is performed using (5–6), i.e. projection on the eigenvec-
tors is performed outside the gaps: interpolated values within the gap areas are never used
to compute projections of the data on the new eigenvectors. As a consequence, expansion
coefficients αi cannot be computed analytically via the inner product in the data space and
the minimization problem (5) has to be solved numerically.

These modifications provide faster convergence of the iterative algorithm for the compu-
tation of the final set of EOFs (Section 3.2.1).

To summarize, the proposed method consists of four major steps:
1. EOF decomposition of the covariance matrix between the radial velocities
2. Signal/noise separation and computation of the cost function weights.
3. Filling gaps in observations.
4. 2dVar interpolation of the preprocessed data set.
To assess the method’s performance, we conducted twin data experiments with simulated

HFR data (Section 3) and real observations off the Opal Coast in northern France (Section
4).

3. Twin-data experiments

3.1. Setting

Setting of the twin-data experiments was chosen to mimic real observations conducted in
the Monterrey Bay in summer of 2003 [21].

The “true” currents vt were extracted from the 12.5-day run of the NCOM model forced
by COAMPS [8] winds. The model was configured on a curvilinear orthogonal grid [18] with
a typical step of 1.8 km. Surface currents were sampled every hour along the beams of three
radars which probed the radial components of the model surface velocity at 386, 407 and 349
points respectively (Fig. 1, upper left panel). Therefore the dimension of the data space was
K=1142. The total number of the gridpoints where velocity vectors were reconstructed was
M=560, so the number of unknowns 2M=1120 was approximately equal to the number of
observations.

Radial velocities vk “observed” at points xk were defined by adding white noise w to
projections of the model currents vt on the beam directions rk:

vk = (P̂kv
t· rk) + νV w. (8)

Here V=0.12 m/s is the typical magnitude of P̂kv
t·rk and ν is the scalar parameter whose

reciprocal has the meaning of signal/noise ratio. Three values of ν (0, 0.1, and 0.3) were
tested within each of six major series of twin-data experiments. Each series was characterized
by specific structure of the artificial gaps introduced into the simulated data set assess the
benefits of the gap-filling technique. These simulated data sets were the following:

0) without the gaps
a) with randomly distributed 1-point gaps (data loss γ =13.5%)
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b) with gaps, generated by obstacles, moving across the domain (Fig. 2): Each obstacle
(ship) spoils data along three beams, whose intersection point coincides with the ship’s posi-
tion. We simulated back-and -forth motion of three ships, which effectively removed 6.9% of
the data points from observations.

c) with the gap created by discarding all observation points in the rectangular region (Fig.
2) for 1 day. This gap removed 28% of the data on August 10-11 and approximately γ =2%
of the data overall.

d) with gaps generated by switching off for 12 hours radars 2,3 on August 4, radar 1 on
August 8 and radars 1,3 on August 12 (Figure 2, γ=6.3%).

e) with all the above mentioned gaps superimposed (γ=28.2%)
To assess the effect of the preliminary interpolation in the data space (step 3, section 2.3),

we also compared the results of 2dVar interpolation of the raw data (with the gaps) and the
results of 2dVar with the gaps filled.

The quality of interpolation was monitored by three parameters: Velocity error ev was
defined as the mean absolute difference between the true vt and interpolated v currents
normalized by the typical magnitude of vt: ev = 〈|vt − v|〉/〈|vt |〉, where angular brackets
denote space-time averaging over the interpolation grid. Similar expressions were used to
assess the interpolation qualities ed, ec of the divergence and vorticity fields:

ed = 〈|div(vt − v)|〉/〈|divvt|〉; ec = 〈|curl(vt − v)|〉/〈|curlvt|〉

3.2. Results

3.2.1. Signal/noise separation

Without the gaps there are N = Kn = 1142 · 301 = 343, 742 observation points, where
n is the number of hourly timesteps in the 12.5 day time window. The CV set was specified
by randomly removing 10-13 points on each time layer (Fig. 1) with the total number of CV
points Ncv=3,490.

The cutoff numberKr was determined for the noise levels (ν=0, 0.1 and 0.3) by minimizing
the interpolation error (7). To examine sensitivity of Kr to changes in the CV set ωc we varied
ωc by specifying different seed values for the random generator of the CV points’ locations,
keeping the ratio Ncv/N close to 1%. These experiments have shown very weak dependence
of Kr on ωc.

Left panel in Figure 3 shows calculations of Kr for the experiments with ν=0.1 and 0.3:
for observations specified by (8) the S/N separation number is 38 for ν=0.1 and 20 for ν=0.3.
The corresponding estimates of the noise level (Eq. (3)) are 0.093 and 0.29 in very good
agreement with the true values. For the case of perfect observations (ν = 0) Kr appeared to
be close to N as the dependence ε(m) flattened out at large m and did not show any distinct
minimum.

To speed up convergence of the BR03 iterative process we made two modifications dis-
cussed in Section 2.3. Figure 3 (right panel) shows their effect for a particular case of m=10
modes and ν=0.3: The gray curve was obtained when the first guess covariance was estimated
without filling the CV gaps with zeroes but with αi in (5) computed through summation over
Ω with v(ωc) = 0. The solid black curve in the same panel was obtained in a similar way
except for summation in (5) was done over Ω \ ωc (i.e. filled CV points were not taken into
account). Similar improvement in convergence was observed for other values of ν and m with
artificial gaps also included.
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Figure 4 demonstrates the impact of gaps on the covariance matrix spectrum and the
performance of the gap-filling procedure for the “realistic” case e (28.2% loss of HFR data,
all types of gaps are present). It is seen that the gaps have little impact on the ten leading
eigenmodes of the spectrum. This could be explained by the fact that these modes are
associated with the largest spatial scales, whereas the examined gaps tend to have stronger
distorting effect on the small (case a) and intermediate (b, c, d) scales of variability.

The gap-filling procedure appears to be rather effective as it dramatically improves the
spectral shapes in the region 10< m < Kr: spectra after gap-filling closely follow the observed
ones for both values of noise level. Moreover, it appears that the gap-filling technique is able
to extract useful signal from noisy observations as the gap-filled curves appear to follow the
true spectrum more closely than the observed (without the gaps) curve in the vicinity of Kr

(ν=0.3).

3.2.2. Cost function weights

Spatial variability of the error variances σk retrieved from the gappy data was not smooth
enough for adequate mapping. We examined dependence of σk on the distance from a radar.
Figure 5 shows a typical curve computed for the case ν = 0.3, γ = 28.2%. Errors increase
from 2 to 4 cm/s in the ranges between 5 and 35 km and then more sharply to 6 cm/s between
35 and 45 km. This behavior can be explained by a certain loss of accuracy of the gap-filling
technique at larger distances, where the density of observation points is getting smaller.

One may think of a possibility to take into account off-diagonal elements of the error
covariance matrix C n by specifying the data misfit weights in Eq. (1) in the full matrix form
C−1

n = U nΛ
−1
n U T

n rather than in its diagonal approximation. Experiments with this formu-
lation of the cost function have shown, however, that diagonal approximation C−1

n ≈ diagσ−2
n

provides a better and more stable fit to the “truth”. A possible reason is that the off-diagonal
elements are obtained from the limited number of samples with less statistical confidence than
the diagonal ones. Indeed, in a series of additional experiments the off-diagonal elements
exhibited strong dependence on the structure of the gaps, whereas their spatial variation
appeared too noisy even at small separations between the data points, resulting in the overall
loss of robustness of the estimate of C−1

n .
The efficiency of the approximation (4) of the regularization weights W u = σ−2

u , W c =
σ−2
c and W d = σ−2

d was checked in a series of experiments, where the weights were varied to
obtain the best fit to the “true” fields. These computations have shown that such “optimized”
weights never departed more than 15% from the respective values obtained with Eq. (4), i.e.
without the exact knowledge of the true velocity. At the same time interpolation errors ev , ec
and ed were only 5-8% larger than the “optimized” ones, showing feasibility of the estimate
(4).

In the following sections we consider algorithm’s performance in more detail, paying
special attention to its skill in the presence of various types of gaps.

3.2.3. Random gaps

Table 1 compares the proposed interpolation algorithm with the 2dVar method [24]. A
robust 1-2% improvement of the interpolation error is observed in the velocity, divergence
and vorticity fields for case a (randomly distributed 1-point gaps, Section 3.1). The improve-
ment is significantly lower than the percentage of data loss (13.5%), primarily because filling
random 1-point gaps affects information content on the grid scale which is poorly resolved
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anyway. Besides, data absence is largely compensated by observations in the points located
in the immediate vicinity of the 1-point gaps at distances often smaller than the grid step.
These neighboring points compensate missing data and provide the 2dVar interpolation with
enough information on the larger-scale variability. Also note that the surface velocity field is
recovered in most cases with a better accuracy ev than the noise level ν = 0.3.

Table 1: Dependence of the interpolated field parameters ev, ec, and ed on the structure of the gaps in HFR
observations for ν = 0.3. The results of standard 2dVar (without filling the gaps) and 2dVar with the gaps
filled are shown respectively in the left and right columns of the table cells.

case γ ev ed ec
0 0.0% —— 0.251 —— 0.652 —— 0.537
a 13.5% 0.260 0.252 0.665 0.659 0.551 0.542
b 6.9% 0.256 0.251 0.662 0.654 0.545 0.540
c 2.0% 0.254 0.251 0.660 0.655 0.545 0.539
d 6.3% 0.280 0.258 0.677 0.661 0.564 0.542

abcd 27.9% 0.311 0.274 0.703 0.679 0.589 0.558

3.2.4. Moving ships

Moving ships (case b) spoil 6.9% of the entire set of 343, 742 data points. Relative im-
provement of the 2dVar interpolation (line 2 in Table 1) is somewhat smaller than for the case
of completely random gaps: Velocity field is better by 1.1% whereas vorticity and divergence
fields show 0.9 and 1.0% improvements respectively. Nevertheless, the proposed algorithm
appears to be pretty robust with respect to this type of gaps as well.

3.2.5. Single gap

Much more difficulties emerge when a gap occupies a significant portion of the interpo-
lation domain, as in case (c) (Fig. 2). To better illustrate the benefits of the gap-filling
technique, we placed the gap at the location of an eddy-like structure seen in the mouth of
the Monterrey Bay around the 10th of August, 2003 (Fig. 6, left panel). Without inter-
polation, this eddy is not reproduced by the 2dVar technique (Fig. 6, right panel), simply
because there is no information on the eddy in the velocity field, surrounding the gap. On the
contrary, if the spatially inhomogeneous correlations between the radial velocities are taken
into account, a certain portion of this eddy emerges from the prior statistical information,
providing a much better skill to the 2dVar algorithm (Fig. 6, middle panel).

Table 1 does not give full impression of the improvement, because error data are averaged
over the whole observation period (12.5 days), whereas the data sets in case (c) differ only
on the 10–11th of August. If averaging is performed over the time period containing the gap
(from 12PST 10.08.2003 to 12PST 11.08.2003) then the advantage is obvious: ev is reduced
from 0.49 to 0.32 (33% reduction). Similar error reductions are also observed for the vorticity
and divergence fields (28 and 37% respectively).

3.2.6. Switching off the radars

A common reason for low data return of a HFR system is malfunction of one or more
radars. We simulated this kind of situation by switching off both northern radars for half a

9



day on the 4th of August, southern radar on the 8th and two southern radars on the 12th.
The strongest reduction of the interpolation errors occurred on the 12th of August, when the
reconstructed (true) currents were generally perpendicular to the beams of the only operating
radar. In that case the velocity error ev reduced 64% (from 0.84 to 0.34) with 66% of the
missing data being filled.

Velocity distributions show that 2dVar interpolation tends to align velocities along the
beams of the only working radar (right panel in Fig. 7), producing rather unrealistic pattern
(compare with the left panel in the same figure). After filling of the missing data at the
southern radars, the skill of the 2dVar algorithm is significantly improved.

Advantage of the preliminary gap-filling is less visible in the case when only one of the
three radars is switched off. This is because the major improvement occurs in the subregions
covered by a single radar: When radar 1 in Fig. 2 was switched off on the 8 of August,
such regions emerged on the periphery of the domain and provided the major contribution
to the 25% increase in ev (computed by averaging over the 12 hr period when the radar was
switched off). Filling of the radar 1 data reduced ev by 15% with similar reductions observed
for the divergence and vorticity errors.

3.2.7. Combined gaps

Finally, all the gaps were combined together to obtain a “realistic” HFR record, charac-
terized by 72% of the data return. Figure 8 gives an overall comparison between the methods
in terms of ev, ed and ec. It is obvious that EOF-based gap-filling of the radial data is
particularly advantageous during a “severe data loss” events caused by either malfunction of
a radar (8.8) or two (4.8, 12.8); or by data loss in a region, whose size is considerably larger
than the grid step (11.8).

Beyond these periods, when only 1-point and ship-generated gaps are present, the pro-
posed algorithm still has some (1-3%) advantage over the 2dVar in terms of ev, ed and ec (see
Table 1 and Fig. 8).

It is also noteworthy that the proposed technique allows to retrieve the sea surface state
with an accuracy ev=0.27 better than the noise level ν=0.3 (Fig. 8) even in the case of
28% loss of observations. The conventional 2dVar technique (ev=0.31, Fig. 8) demonstrates
somewhat lower skill, primarily because of much poorer performance during the heavy data
loss periods.

4. Real data experiments

To test the algorithm with real data, we processed HFR observations obtained in the
course of the ERMANO experiment off the Opal coast of the Pas de Calais in northern
France.

4.1. The data

In May-June 2003, two HF radars were deployed to monitor surface currents: one radar
was located on the Cape Gris Nez (CGN) and the other one was 12 km farther south, at
Wimereux (WMX, Figure 9). The entire 35-day record from 0.00 CET 01.05.2003 to 23.40
CET 04.06.2003 was used for testing. Surface currents were sampled every 20 minutes at 10◦

azimuthal resolution defined by the beam width. The radial velocity data were binned along
the beams at 1.8 km resolution. Grid cells with less than 75% data returns were excluded
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from consideration, constraining the interpolation domain to the ranges less than 20 km [20]
and the total number of ”good” observation points to K=203. Overall, the analyzed records
were characterized by 87% of data return (68,059 of 511,560 observations were discarded).
Approximately 10% of the missing radial velocities were due to data acquisition problems
at the Wimereux radar on May 3 (3 hours) and May 21-22 (21 hours). The instrumental
accuracy of the measurements was 5 cm/s.

Regional velocity pattern (Fig. 9) is dominated by the M2 tidal constituent which con-
tributes 77% to the total velocity variation in the area. The maximum velocities reach 1.8
m/s with the typical magnitude of the velocity vector of 0.52 m/s. Observed radial velocities
had the rms amplitude of εr=0.34 m/s.

To estimate observational noise level and the quality of interpolation, a set of CV points
ωc was removed from the data. Every 20 minutes 8-12 locations were randomly selected, and
radial velocities observed at these points were extracted from the data set. In total, 24,097
(4.7%) observations were removed.

The quality of interpolation was estimated as the mean absolute difference between the
values of the interpolated velocity at the CV points and the radial velocities measured at
these points:

e∗v = 〈|vk − P̂kv · rk|〉

Here index k enumerates the CV points and angular brackets denote averaging over ωc. The
total number of gaps in observations (including the CV points) was 92,156 (18%).

4.2. Results

Similar to twin-data experiments, the noise level was determined by minimizing the CV
interpolation error (7). Dependencies of the normalized interpolation errors ε and e∗v on the
number of modes k demonstrated distinct minima at k = 33 − 35 (Fig. 10). We selected
Nr = 33 as the noise cutoff number. The observational noise level computed through eq.
(3) was close to 0.15, or 5.1 cm/s, in a good correspondence with the above estimate of the
instrumental error.

In experiments with real data the true velocity field is unavailable, so the quality of
interpolation of the curl and divergence fields ec, ed cannot be assessed. The interpolation
quality was monitored by a single parameter e∗v estimated at the CV points. Figure 11 shows
time evolution of e∗v for two cases: with and without filling the gaps. It is seen that the
preliminary gap-filling technique is able to reduce the time averaged relative interpolation
error to 0.16 (5.5 cm/s), a value very close to the observational noise level. On the contrary,
the mean value of e∗v without preliminary gap filling appears more than two times higher (0.35)
indicating a significant benefit of combining 2dVar interpolation with the EOF analysis.

The advantage of the gap-filling technique is most vividly seen during the periods when
the Wimereux radar was not working (see increase in the data loss to 45-50% on May 3 and
21-22 in Fig. 11). Figure 12 shows tidal ellipses obtained by averaging of the interpolated
currents over the 24-hour period from 12.00 CET 21.05 to 12.00 CET 22.05 for the cases
with (a) and without (b) preliminary gap-filling. The pattern in Figure 12a appears to be
completely unrealistic as the major axes of the ellipses tend to align along the beams of the
only operating radar in Cape Gris Nez. Figure 12b is apparently more close to reality since
the spatial distribution of the ellipses is much more similar to the one obtained by averaging
the currents over the two 24-hour periods immediately before and immediately after the gap
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(from 12.00 20.05 to 12.00 21.05 and from 9.00 22.05 to 9.00 23.05): During these two periods
both radars were in full operation with the average data return of approximately 9% (Fig.
11, 12c).

Robustness of the noise separation and gap-filling algorithms was investigated in the
similar way as in twin-data experiments: the CV subset ωc was varied in size from 2 to 5% of
the total number of observations by changing the parameters of the random generator of the
CV points. The resulting values of Kr were found to vary between 32 and 36 (ν=16-13%)
while the respective values of e∗v were even more stable varying in the range of 0.158-0.164.

We also studied the effect of the length of time averaging T on the quality of interpolation:
The averaging interval was centered at 23.20 GMT 21.05.2003 (middle of the gap in Fig. 11)
and varied between 3 and 20 days. Results of these experiments have shown that e∗v comes
close to the saturation (noise) level when T > 6 days, i.e. approximately 12 periods of the
dominant wave (M2) were necessary to provide statistically robust cross-correlations between
the radial velocities of two radars.

5. Discussion and conclusions

Observations of surface currents by high frequency radars are disrupted by environmental
factors causing numerous gaps in the data. The number of gaps increases with distance
and result in the loss of accuracy at far ranges. Moreover, since continuous operation of at
least two radars is crucial for successful reconstruction of the velocity field, even a short-
term radar malfunction may interrupt monitoring of the surface velocity and result in the
dramatic loss of accuracy in prediction of particle trajectories that is important in many
practical applications.

In the present study we combined the EOF analysis with the 2dVar interpolation tech-
nique to successfully process occasional single-radar coverage events and improve the overall
quality of monitoring of sea surface currents by the HF radars. EOF analysis of the radial
velocities provides a) statistically rigorous estimation of the weights for the 2dVar algorithm,
and b) a set of spatial patterns (EOFs) capable to fill large gaps in the data caused by radar
malfunctions. Our approach takes the advantage of the frequent time sampling by the HFRs
and employs observation history to estimate the leading modes of variability of the radial
velocities. Similar to SST analysis [2], [1], these modes are used to fill the gaps in HFR obser-
vations, which frequently occur in practice. Numerical experiments with simulated and real
data have shown that preliminary gap-filling is extremely beneficial during occasional periods
of heavy data loss associated with radar malfunctioning: With the proposed technique, the
interpolation errors during these periods are typically reduced 1.5 - 2 times providing much
more realistic velocity distributions (Fig. 7, 12).

The interpolation method can be summarized as a four-step procedure: EOF analysis
of the radial velocities; estimation of the noise and the cost function weights; filling gaps in
observations, and finally, retrieving of the velocity vectors from the filled data set.

In real applications the HFR time series may exceed 1-2 years, and selection of the time
interval for estimating the covariances becomes important. In the present study the sea
surface velocity was dominated by tidal motions, and we have shown that averaging over
more than 12 periods of the dominant wave is adequate. In the near-coastal areas with
weak tidal currents (e.g., lakes, semi-enclosed seas) the time interval should be long enough
to statistically capture the major events typical for regional sea surface dynamics. Our
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ongoing experience with multi-year HFR observations in the Gulf of Lyon [6] shows that
the presented method also works well in a region whose dynamics is quite different from the
tidally-dominated regime considered here: circulation in the Gulf is characterized by sporadic
mistral wind-driven events on the background of strong mesoscale activity and relatively weak
tidal/inertial oscillations. It was found that 4-month moving average was adequate enough
to apply the technique successfully.

The proposed method may not be applicable to short HFR records characterized by 1–2
brief and strong “events” occurring during the observation period. In that case the cross-
validation technique may not properly work and the S/N separation model may be invalid
because noise statistics becomes far from Gaussian.

From the computational point of view, the proposed algorithm is not expensive: the
most time-consuming part is calculation of the S/N separation number Kr which requires
multiple interpolation runs in the data space (Fig. 3, 10). In our case these computations
consumed only several minutes of CPU time of a single 2.66 GHz processor. For larger grids
(K,M ∼ 104) the required CPU time may be close to an hour, but can be easily reduced
using multiple processors because the time-consuming computation of the curve in the left
panel of Fig. 3 is readily parallelized in the number of modes. Besides, since Kr is unlikely
to change in time significantly, this lengthy computation have to be executed only once: a
search for a minimum in Fig. 3, 10 could be done more effectively when a good guess for Kr

is available from the first computation.
In view of the above, the technique can be applied in near-real time with only minor

modification. In this case error statistics is estimated by averaging over the period preceeding
the moment of data acquisition and then updated by replacing the oldest data in the time
series by the new readings. Similar updates are made to other quantities described in section
2.2. However, since the number of samples used for statistical estimation is fairly large, the
updates can be made once in a while, e.g. when contribution cn of new data to the time
series exceeds 1-2%. This ”real-time” approach has been tested with the HFR observations
in the Gulf of Lyon [6]. Preliminary results show that time-averaged intepolation error e∗v is
reduced significantly when the variational method is combined with the gap-filling technique,
but this reduction is not sensitive to the frequency of updates when cn < 2.5% (every 3 days).

Presented material and preliminary results with multi-year HFR observations do suggest
that the proposed technique may be useful in processing a large variety of HFR data sets
with significant loss of data.
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Figure 1: Evolution of the reconstructed surface velocity field in the Monterrey Bay. Upper left panel shows
distribution of the observation points. Solid line indicates the boundary of the interpolation domain Ω. Cross-
validation points are shown by asterisks.
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Figure 2: Setting of the gap simulation experiments: Gray shading shows data acquisition areas of the radars
in the presence of a simulated ship (case b) moving across the Monterrey Bay. Area within the rectangle shows
the boundary of the data-free region in case c. Numbers enumerate radars switched off in case d.
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Figure 3: Left: Interpolation error ε as a function of the number of modes m. Right: convergence rates in
computation of this error (ν = 0.3, m = 10) for the iterative process used in BR03 (1), for the same process
but with the direct estimate of C at the zeroth iteration (2), and the process used in the present study (3).
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Figure 4: Normalized spectra of the NCOM radial velocities taken directly from the model (black dashed
curve), same velocities contaminated by noise (eq. (10), solid black curve), with gaps superimposed (solid
gray) and the gaps removed (dashed gray). Shaded region on the right denotes the null space of the covariance
matrix estimated with full (N=300) time series. Spectral components with m > N emerge as a result of uneven
lengths of the time series in the estimate of the covariance matrix elements — without gaps there are K =1142
time series with N elements each and spectral density is zero at m > N for continuous observations. Note
that presence of the gaps artificially elevates the relative spectral density at m > 10.
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Figure 5: Mean radial velocity error variance σ(v) as a function of the distance from a radar.
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Figure 6: The “true” velocity field (left panel) and velocity fields reconstructed by 2dVar with preliminary
filling the rectangular gap (middle panel) and without (right panel).
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Figure 8: Velocity interpolation error ev for the “perfect” data set (without gaps, red line), for the gappy data
with (black) and without (blue) preliminary EOF-based interpolation of the radial data. Shaded area denotes
the part of data occupied by the gaps. Particularly severe losses of data are observed during simulated radar
malfunctions (4, 8 and 12 of August) and on August 11th, when “observations” were removed from a large
region shown in Fig. 2
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Figure 11: Radial velocity errors at the cross-validation points for 2dVar interpolation with (bold curve)
and without preliminary gap-filling. Errors are normalized by the observed radial velocity variance εr and
smoothed with the 2-hour running mean. Shading indicates the relative amount of gaps in the data.
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Figure 12: Tidal ellipses computed by averaging of the surface velocities obtained by the standard 2dVar
method (a); and the proposed EOF/2dVar technique (b,c). 24-hour time averaging is performed over the
period of one operating radar (starting 12.40GMT 21.05) for (a) and (b) and over two 24-hour intervals
preceeding the gap (starting 12.40 20.05) and following immediately after (starting 12.00 22.05) for (c). Every
second ellipse is shown.
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